Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Schizophr Res ; 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38290943

RESUMO

BACKGROUND: Schizophrenia (SCZ) is a severe neuropsychiatric disorder of complex, poorly understood etiology, associated with both genetic and environmental factors. De novo mutations (DNMs) represent a new source of genetic variation in SCZ, however, in most cases their biological significance remains unclear. We sought to investigate molecular disease pathways connected to DNMs in SCZ by combining human induced pluripotent stem cell (hiPSC) based disease modeling and CRISPR-based genome editing. METHODS: We selected a SCZ case-parent trio with the case individual carrying a potentially disease causing 1495C > T nonsense DNM in the zinc finger MYND domain-containing protein 11 (ZMYND11), a gene implicated in biological processes relevant for SCZ. In the patient-derived hiPSC line the mutation was corrected using CRISPR, while monoallelic or biallelic frameshift mutations were introduced into a control hiPSC line. Isogenic cell lines were differentiated into hippocampal neuronal progenitor cells (NPCs) and functionally active dentate gyrus granule cells (DGGCs). Immunofluorescence microscopy and RNA sequencing were used to test for morphological and transcriptomic differences at NPC and DGCC stages. Functionality of neurons was investigated using calcium-imaging and multi-electrode array measurements. RESULTS: Morphology in the mutant hippocampal NPCs and neurons was preserved, however, we detected significant transcriptomic and functional alterations. RNA sequencing showed massive upregulation of neuronal differentiation genes, and downregulation of cell adhesion genes. Decreased reactivity to glutamate was demonstrated by calcium-imaging. CONCLUSIONS: Our findings lend support to the involvement of glutamatergic dysregulation in the pathogenesis of SCZ. This approach represents a powerful model system for precision psychiatry and pharmacological research.

2.
Membranes (Basel) ; 13(10)2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37887994

RESUMO

The human ABCG2 multidrug transporter plays a crucial role in the absorption and excretion of xeno- and endobiotics, contributes to cancer drug resistance and the development of gout. In this work, we have analyzed the effects of selected variants, residing in a structurally unresolved cytoplasmic region (a.a. 354-367) of ABCG2 on the function and trafficking of this protein. A cluster of four lysines (K357-360) and the phosphorylation of a threonine (T362) residue in this region have been previously suggested to significantly affect the cellular fate of ABCG2. Here, we report that the naturally occurring K360del variant in human cells increased ABCG2 plasma membrane expression and accelerated cellular trafficking. The variable alanine replacements of the neighboring lysines had no significant effect on transport function, and the apical localization of ABCG2 in polarized cells has not been altered by any of these mutations. Moreover, in contrast to previous reports, we found that the phosphorylation-incompetent T362A, or the phosphorylation-mimicking T362E variants in this loop had no measurable effects on the function or expression of ABCG2. Molecular dynamics simulations indicated an increased mobility of the mutant variants with no major effects on the core structure of the protein. These results may help to decipher the potential role of this unstructured region within this transporter.

3.
Elife ; 122023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36763413

RESUMO

ABCG2 is an exporter-type ABC protein that can expel numerous chemically unrelated xeno- and endobiotics from cells. When expressed in tumor cells or tumor stem cells, ABCG2 confers multidrug resistance, contributing to the failure of chemotherapy. Molecular details orchestrating substrate translocation and ATP hydrolysis remain elusive. Here, we present methods to concomitantly investigate substrate and nucleotide binding by ABCG2 in cells. Using the conformation-sensitive antibody 5D3, we show that the switch from the inward-facing (IF) to the outward-facing (OF) conformation of ABCG2 is induced by nucleotide binding. IF-OF transition is facilitated by substrates, and hindered by the inhibitor Ko143. Direct measurements of 5D3 and substrate binding to ABCG2 indicate that the high-to-low affinity switch of the drug binding site coincides with the transition from the IF to the OF conformation. Low substrate binding persists in the post-hydrolysis state, supporting that dissociation of the ATP hydrolysis products is required to reset the high substrate affinity IF conformation of ABCG2.


Assuntos
Trifosfato de Adenosina , Trifosfato de Adenosina/metabolismo , Conformação Proteica
4.
Int J Mol Sci ; 23(22)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36430223

RESUMO

ABCG1 has been proposed to play a role in HDL-dependent cellular sterol regulation; however, details of the interaction between the transporter and its potential sterol substrates have not been revealed. In the present work, we explored the effect of numerous sterol compounds on the two isoforms of ABCG1 and ABCG4 and made efforts to identify the molecular motifs in ABCG1 that are involved in the interaction with cholesterol. The functional readouts used include ABCG1-mediated ATPase activity and ABCG1-induced apoptosis. We found that both ABCG1 isoforms and ABCG4 interact with several sterol compounds; however, they have selective sensitivities to sterols. Mutational analysis of potential cholesterol-interacting motifs in ABCG1 revealed altered ABCG1 functions when F571, L626, or Y586 were mutated. L430A and Y660A substitutions had no functional consequence, whereas Y655A completely abolished the ABCG1-mediated functions. Detailed structural analysis of ABCG1 demonstrated that the mutations modulating ABCG1 functions are positioned either in the so-called reentry helix (G-loop/TM5b,c) (Y586) or in its close proximity (F571 and L626). Cholesterol molecules resolved in the structure of ABCG1 are also located close to Y586. Based on the experimental observations and structural considerations, we propose an essential role for the reentry helix in cholesterol sensing in ABCG1.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Colesterol , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Esteróis , Adenosina Trifosfatases/metabolismo
5.
Front Cell Dev Biol ; 10: 997028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36313581

RESUMO

Microglia, the primary immune cells of the brain, significantly influence the fate of neurons after neural damage. Depending on the local environment, they exhibit a wide range of phenotypes, including patrolling (naïve), proinflammatory, and anti-inflammatory characteristics, which greatly affects neurotoxicity. Despite the fact that neural progenitor cells (NPCs) and hippocampal neurons represent cell populations, which play pivotal role in neural regeneration, interaction between microglia and these cell types is poorly studied. In the present work, we investigated how microglial cells affect the proliferation and neurite outgrowth of human stem cell-derived NPCs, and how microglia stimulation with proinflammatory or anti-inflammatory agents modulates this interaction. We found that naïve microglia slightly diminish NPC proliferation and have no effect on neurite outgrowth. In contrast, proinflammatory stimulated microglia promote both proliferation and neurite generation, whereas microglia stimulated with anti-inflammatory cytokines augment neurite outgrowth leaving NPC proliferation unaffected. We also studied how microglia influence neurite development and differentiation of hippocampal dentate gyrus granule cells differentiated from NPCs. We found that proinflammatory stimulated microglia inhibit axonal development but facilitate dendrite generation in these differentiating neurons. Our results elucidate a fine-tuned modulatory effect of microglial cells on cell types crucial for neural regeneration, opening perspectives for novel regenerative therapeutic interventions.

6.
Methods Mol Biol ; 2454: 241-255, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33826126

RESUMO

Human neuronal cell cultures are essential tools for biological and preclinical studies of our nervous system. Since we have very limited access to primary human neural samples, derivation of proliferative neural progenitor cells (NPCs) from cells harvested by minimally invasive sampling is a key issue. Here we describe a "shortcut" method to establish proliferative NPC cultures directly from peripheral blood mononuclear cells (PBMCs) via interrupted reprogramming. In addition, we provide procedures to characterize the NPC stage.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Neurais , Diferenciação Celular/fisiologia , Reprogramação Celular , Humanos , Leucócitos Mononucleares , Neurônios
7.
Front Cell Dev Biol ; 9: 719636, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34604221

RESUMO

Studies on neural development and neuronal regeneration after injury are mainly based on animal models. The establishment of pluripotent stem cell (PSC) technology, however, opened new perspectives for better understanding these processes in human models by providing unlimited cell source for hard-to-obtain human tissues. Here, we aimed at identifying the molecular factors that confine and modulate an early step of neural regeneration, the formation of neurites in human neural progenitor cells (NPCs). Enhanced green fluorescent protein (eGFP) was stably expressed in NPCs differentiated from human embryonic and induced PSC lines, and the neurite outgrowth was investigated under normal and injury-related conditions using a high-content screening system. We found that inhibitors of the non-muscle myosin II (NMII), blebbistatin and its novel, non-toxic derivatives, initiated extensive neurite outgrowth in human NPCs. The extracellular matrix components strongly influenced the rate of neurite formation but NMII inhibitors were able to override the inhibitory effect of a restrictive environment. Non-additive stimulatory effect on neurite generation was also detected by the inhibition of Rho-associated, coiled-coil-containing protein kinase 1 (ROCK1), the upstream regulator of NMII. In contrast, inhibition of c-Jun N-terminal kinases (JNKs) had only a negligible effect, suggesting that the ROCK1 signal is dominantly manifested by actomyosin activity. In addition to providing a reliable cell-based in vitro model for identifying intrinsic mechanisms and environmental factors responsible for impeded axonal regeneration in humans, our results demonstrate that NMII and ROCK1 are important pharmacological targets for the augmentation of neural regeneration at the progenitor level. These studies may open novel perspectives for development of more effective pharmacological treatments and cell therapies for various neurodegenerative disorders.

8.
Cancers (Basel) ; 13(6)2021 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802790

RESUMO

We demonstrated that the plasma membrane Ca2+ ATPase PMCA4b inhibits migration and metastatic activity of BRAF mutant melanoma cells. Actin dynamics are essential for cells to move, invade and metastasize, therefore, we hypothesized that PMCA4b affected cell migration through remodeling of the actin cytoskeleton. We found that expression of PMCA4b in A375 BRAF mutant melanoma cells induced a profound change in cell shape, cell culture morphology, and displayed a polarized migratory character. Along with these changes the cells became more rounded with increased cell-cell connections, lamellipodia and stress fiber formation. Silencing PMCA4b in MCF-7 breast cancer cells had a similar effect, resulting in a dramatic loss of stress fibers. In addition, the PMCA4b expressing A375 cells maintained front-to-rear Ca2+ concentration gradient with the actin severing protein cofilin localizing to the lamellipodia, and preserved the integrity of the actin cytoskeleton from a destructive Ca2+ overload. We showed that both PMCA4b activity and trafficking were essential for the observed morphology and motility changes. In conclusion, our data suggest that PMCA4b plays a critical role in adopting front-to-rear polarity in a normally spindle-shaped cell type through F-actin rearrangement resulting in a less aggressive melanoma cell phenotype.

9.
Int J Mol Sci ; 22(6)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801813

RESUMO

Several polymorphisms and mutations in the human ABCG2 multidrug transporter result in reduced plasma membrane expression and/or diminished transport function. Since ABCG2 plays a pivotal role in uric acid clearance, its malfunction may lead to hyperuricemia and gout. On the other hand, ABCG2 residing in various barrier tissues is involved in the innate defense mechanisms of the body; thus, genetic alterations in ABCG2 may modify the absorption, distribution, excretion of potentially toxic endo- and exogenous substances. In turn, this can lead either to altered therapy responses or to drug-related toxic reactions. This paper reviews the various types of mutations and polymorphisms in ABCG2, as well as the ways how altered cellular processing, trafficking, and transport activity of the protein can contribute to phenotypic manifestations. In addition, the various methods used for the identification of the impairments in ABCG2 variants and the different approaches to correct these defects are overviewed.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Predisposição Genética para Doença/genética , Gota/genética , Hiperuricemia/genética , Mutação , Polimorfismo de Nucleotídeo Único , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Gota/metabolismo , Humanos , Hiperuricemia/metabolismo , Modelos Genéticos , Transporte Proteico/genética
10.
Front Cell Dev Biol ; 9: 615729, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33634118

RESUMO

Proper targeting of the urate and xenobiotic transporter ATP-binding transporter subfamily G member 2 (ABCG2) to the plasma membrane (PM) is essential for its normal function. The naturally occurring Q141K and M71V polymorphisms in ABCG2, associated with gout and hyperuricemia, affect the cellular routing of the transporter, rather than its transport function. The cellular localization of ABCG2 variants was formerly studied by immunolabeling, which provides information only on the steady-state distribution of the protein, leaving the dynamics of its cellular routing unexplored. In the present study, we assessed in detail the trafficking of the wild-type, M71V-, and Q141K-ABCG2 variants from the endoplasmic reticulum (ER) to the cell surface using a dynamic approach, the so-called Retention Using Selective Hooks (RUSH) system. This method also allowed us to study the kinetics of glycosylation of these variants. We found that the fraction of Q141K- and M71V-ABCG2 that passes the ER quality control system is only partially targeted to the PM; a subfraction is immobile and retained in the ER. Surprisingly, the transit of these variants through the Golgi apparatus (either the appearance or the exit) was unaffected; however, their PM delivery beyond the Golgi was delayed. In addition to identifying the specific defects in the trafficking of these ABCG2 variants, our study provides a novel experimental tool for studying the effect of drugs that potentially promote the cell surface delivery of mutant or polymorphic ABCG2 variants with impaired trafficking.

11.
Stem Cell Res ; 51: 102140, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33503521

RESUMO

Here we describe the generation of induced pluripotent stem cell lines from each member - male proband, mother, father - of a schizophrenia case-parent trio that participated in an exome sequencing study, and 3 de novo mutations were identified in the proband. Peripheral blood mononuclear cells were obtained from all three individuals and reprogrammed using Sendai virus particles carrying the Yamanaka transgenes. These 3 iPSC lines (iPSC-SZ-HU-MO 1, iPSC-SZ-HU-FA 1, and iPSC-SZ-HU-PROB 1) represent a resource for examining the functional significance of the identified de novo mutations in the molecular pathophysiology of schizophrenia.


Assuntos
Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Células Clonais , Humanos , Leucócitos Mononucleares , Masculino , Mutação/genética , Proteínas de Ligação a RNA , Receptores KIR2DL1 , Esquizofrenia/genética , Sialoglicoproteínas , Transativadores
12.
Methods Appl Fluoresc ; 9(1): 015006, 2021 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-33427202

RESUMO

Synthesis and multiple STED imaging applications of four, red-emitting (610-670 nm), tetrazine-functionalized fluorescent probes (CBRD = Chemical Biology Research group Dye 1-4) with large Stokes-shift is presented. Present studies revealed the super-resolution microscopy applicability of the probes as demonstrated through bioorthogonal labeling scheme of cytoskeletal proteins actin and keratin-19, and mitochondrial protein TOMM20. Furthermore, super-resolved images of insulin receptors in live-cell bioorthogonal labeling schemes through a genetically encoded cyclooctynylated non-canonical amino acid are also presented. The large Stokes-shifts and the wide spectral bands of the probes enabled the use of two common depletion lasers (660 nm and 775 nm). The probes were also found suitable for super-resolution microscopy in combination with two-photon excitation (2P-STED) resulting in improved spatial resolution. One of the dyes was also used together with two commercial dyes in the three-color STED imaging of intracellular structures.


Assuntos
Corantes Fluorescentes , Microscopia de Fluorescência/métodos , Actinas/análise , Actinas/ultraestrutura , Linhagem Celular , Células HEK293 , Células HeLa , Humanos , Queratina-19/análise , Queratina-19/ultraestrutura , Proteínas de Membrana Transportadoras/análise , Proteínas de Membrana Transportadoras/ultraestrutura , Microscopia Confocal , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Receptor de Insulina/análise , Receptor de Insulina/ultraestrutura , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/ultraestrutura
13.
Genes (Basel) ; 13(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35052421

RESUMO

The primordial germ cells (PGCs) are the precursors for both the oocytes and spermatogonia. Recently, a novel culture system was established for chicken PGCs, isolated from embryonic blood. The possibility of PGC long-term cultivation issues a new advance in germ cell preservation, biotechnology, and cell biology. We investigated the consequence of gga-miR-302b-5P (5P), gga-miR-302b-3P (3P) and dual inhibition (5P/3P) in two male and two female chicken PGC lines. In treated and control cell cultures, the cell number was calculated every four hours for three days by the XLS Imaging system. Comparing the cell number of control and treated lines on the first day, we found that male lines had a higher proliferation rate independently from the treatments. Compared to the untreated ones, the proliferation rate and the number of apoptotic cells were considerably reduced at gga-miR-302b-5P inhibition in all PGC lines on the third day of the cultivation. The control PGC lines showed a significantly higher proliferation rate than 3P inhibited lines on Day 3 in all PGC lines. Dual inhibition of gga-miR-302b mature miRNAs caused a slight reduction in proliferation rate, but the number of apoptotic cells increased dramatically. The information gathered by examining the factors affecting cell proliferation of PGCs can lead to new data in stem cell biology.


Assuntos
Apoptose , Proliferação de Células , Células Germinativas/patologia , MicroRNAs/genética , Animais , Movimento Celular , Galinhas , Feminino , Células Germinativas/metabolismo , Masculino
14.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266139

RESUMO

Induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) are promising tools to model complex neurological or psychiatric diseases, including schizophrenia. Multiple studies have compared patient-derived and healthy control NPCs derived from iPSCs in order to investigate cellular phenotypes of this disease, although the establishment, stabilization, and directed differentiation of iPSC lines are rather expensive and time-demanding. However, interrupted reprogramming by omitting the stabilization of iPSCs may allow for the generation of a plastic stage of the cells and thus provide a shortcut to derive NPSCs directly from tissue samples. Here, we demonstrate a method to generate shortcut NPCs (sNPCs) from blood mononuclear cells and present a detailed comparison of these sNPCs with NPCs obtained from the same blood samples through stable iPSC clones and a subsequent neural differentiation (classical NPCs-cNPCs). Peripheral blood cells were obtained from a schizophrenia patient and his two healthy parents (a case-parent trio), while a further umbilical cord blood sample was obtained from the cord of a healthy new-born. The expression of stage-specific markers in sNPCs and cNPCs were compared both at the protein and RNA levels. We also performed functional tests to investigate Wnt and glutamate signaling and the oxidative stress, as these pathways have been suggested to play important roles in the pathophysiology of schizophrenia. We found similar responses in the two types of NPCs, suggesting that the shortcut procedure provides sNPCs, allowing an efficient screening of disease-related phenotypes.


Assuntos
Diferenciação Celular , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Biomarcadores , Diferenciação Celular/genética , Células Cultivadas , Regulação da Expressão Gênica no Desenvolvimento , Glutamina/metabolismo , Humanos , Imuno-Histoquímica , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Transdução de Sinais
15.
Front Cell Dev Biol ; 8: 575227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178691

RESUMO

Efficient cell migration requires cellular polarization, which is characterized by the formation of leading and trailing edges, appropriate positioning of the nucleus and reorientation of the Golgi apparatus and centrosomes toward the leading edge. Migration also requires the development of an asymmetrical front-to-rear calcium (Ca2+) gradient to regulate focal adhesion assembly and actomyosin contractility. Here we demonstrate that silencing of syndecan-4, a transmembrane heparan sulfate proteoglycan, interferes with the correct polarization of migrating mammalian myoblasts (i.e., activated satellite stem cells). In particular, syndecan-4 knockdown completely abolished the intracellular Ca2+ gradient, abrogated centrosome reorientation and thus decreased cell motility, demonstrating the role of syndecan-4 in cell polarity. Additionally, syndecan-4 exhibited a polarized distribution during migration. Syndecan-4 knockdown cells exhibited decreases in the total movement distance during directional migration, maximum and vectorial distances from the starting point, as well as average and maximum cell speeds. Super-resolution direct stochastic optical reconstruction microscopy images of syndecan-4 knockdown cells revealed nanoscale changes in the actin cytoskeletal architecture, such as decreases in the numbers of branches and individual branch lengths in the lamellipodia of the migrating cells. Given the crucial importance of myoblast migration during embryonic development and postnatal muscle regeneration, we conclude that our results could facilitate an understanding of these processes and the general role of syndecan-4 during cell migration.

16.
Stem Cell Res Ther ; 11(1): 504, 2020 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246498

RESUMO

BACKGROUND: De novo mutations (DNMs) have been implicated in the etiology of schizophrenia (SZ), a chronic debilitating psychiatric disorder characterized by hallucinations, delusions, cognitive dysfunction, and decreased community functioning. Several DNMs have been identified by examining SZ cases and their unaffected parents; however, in most cases, the biological significance of these mutations remains elusive. To overcome this limitation, we have developed an approach of using induced pluripotent stem cell (iPSC) lines from each member of a SZ case-parent trio, in order to investigate the effects of DNMs in cellular progenies of interest, particularly in dentate gyrus neuronal progenitors. METHODS: We identified a male SZ patient characterized by early disease onset and negative symptoms, who is a carrier of 3 non-synonymous DNMs in genes LRRC7, KHSRP, and KIR2DL1. iPSC lines were generated from his and his parents' peripheral blood mononuclear cells using Sendai virus-based reprogramming and differentiated into neuronal progenitor cells (NPCs) and hippocampal dentate gyrus granule cells. We used RNASeq to explore transcriptomic differences and calcium (Ca2+) imaging, cell proliferation, migration, oxidative stress, and mitochondrial assays to characterize the investigated NPC lines. RESULTS: NPCs derived from the SZ patient exhibited transcriptomic differences related to Wnt signaling, neuronal differentiation, axonal guidance and synaptic function, and decreased Ca2+ reactivity to glutamate. Moreover, we could observe increased cellular proliferation and alterations in mitochondrial quantity and morphology. CONCLUSIONS: The approach of reprograming case-parent trios represents an opportunity for investigating the molecular effects of disease-causing mutations and comparing these in cell lines with reduced variation in genetic background. Our results are indicative of a partial overlap between schizophrenia and autism-related phenotypes in the investigated family. LIMITATIONS: Our study investigated only one family; therefore, the generalizability of findings is limited. We could not derive iPSCs from two other siblings to test for possible genetic effects in the family that are not driven by DNMs. The transcriptomic and functional assays were limited to the NPC stage, although these variables should also be investigated at the mature neuronal stage.


Assuntos
Transtorno Autístico , Células-Tronco Pluripotentes Induzidas , Esquizofrenia , Humanos , Leucócitos Mononucleares , Masculino , Mutação , Fenótipo , Proteínas de Ligação a RNA , Esquizofrenia/genética , Sialoglicoproteínas , Transativadores
17.
FEBS Lett ; 594(23): 4012-4034, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33015850

RESUMO

The ABCG2 protein has a key role in the transport of a wide range of structurally dissimilar endo- and xenobiotics in the human body, especially in the tissue barriers and the metabolizing or secreting organs. The human ABCG2 gene harbors a high number of polymorphisms and mutations, which may significantly modulate its expression and function. Recent high-resolution structural data, complemented with molecular dynamic simulations, may significantly help to understand intramolecular movements and substrate handling, as well as the effects of mutations on the membrane transporter function of ABCG2. As reviewed here, structural alterations may result not only in direct alterations in drug binding and transporter activity, but also in improper folding or problems in the carefully regulated process of trafficking, including vesicular transport, endocytosis, recycling, and degradation. Here, we also review the clinical importance of altered ABCG2 expression and function in general drug metabolism, cancer multidrug resistance, and impaired uric acid excretion, leading to gout.


Assuntos
Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/química , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Mutação , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Resistencia a Medicamentos Antineoplásicos , Retículo Endoplasmático/metabolismo , Gota/metabolismo , Humanos , Modelos Moleculares , Proteínas de Neoplasias/genética , Dobramento de Proteína , Células-Tronco/metabolismo , Ácido Úrico/metabolismo
18.
Q Rev Biophys ; 53: e5, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32115014

RESUMO

Here it is demonstrated how some anionic food additives commonly used in our diet, such as tartrazine (TZ), bind to DHVAR4, an antimicrobial peptide (AMP) derived from oral host defense peptides, resulting in significantly fostered toxic activity against both Gram-positive and Gram-negative bacteria, but not against mammalian cells. Biophysical studies on the DHVAR4-TZ interaction indicate that initially large, positively charged aggregates are formed, but in the presence of lipid bilayers, they rather associate with the membrane surface. In contrast to synergistic effects observed for mixed antibacterial compounds, this is a principally different mechanism, where TZ directly acts on the membrane-associated AMP promoting its biologically active helical conformation. Model vesicle studies show that compared to dye-free DHVAR4, peptide-TZ complexes are more prone to form H-bonds with the phosphate ester moiety of the bilayer head-group region resulting in more controlled bilayer fusion mechanism and concerted severe cell damage. AMPs are considered as promising compounds to combat formidable antibiotic-resistant bacterial infections; however, we know very little on their in vivo actions, especially on how they interact with other chemical agents. The current example illustrates how food dyes can modulate AMP activity, which is hoped to inspire improved therapies against microbial infections in the alimentary tract. Results also imply that the structure and function of natural AMPs could be manipulated by small compounds, which may also offer a new strategic concept for the future design of peptide-based antimicrobials.


Assuntos
Antibacterianos/química , Membrana Celular/metabolismo , Corantes de Alimentos/química , Histatinas/química , Peptídeos/química , Animais , Transporte Biológico/efeitos dos fármacos , Dicroísmo Circular , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Citometria de Fluxo , Células HeLa , Humanos , Bicamadas Lipídicas/química , Testes de Sensibilidade Microbiana , Microscopia de Fluorescência , Monócitos/efeitos dos fármacos , Fosfatos/química , Espectrofotometria , Espectroscopia de Infravermelho com Transformada de Fourier , Streptococcus pneumoniae/efeitos dos fármacos
19.
Cell Mol Life Sci ; 77(24): 5243-5258, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32034429

RESUMO

Synaptic functional disturbances with concomitant synapse loss represent central pathological hallmarks of Alzheimer's disease. Excessive accumulation of cytotoxic amyloid oligomers is widely recognized as a key event that underlies neurodegeneration. Certain complement components are crucial instruments of widespread synapse loss because they can tag synapses with functional impairments leading to their engulfment by microglia. However, an exact understanding of the affected synaptic functions that predispose to complement-mediated synapse elimination is lacking. Therefore, we conducted systematic proteomic examinations on synaptosomes prepared from an amyloidogenic mouse model of Alzheimer's disease (APP/PS1). Synaptic fractions were separated according to the presence of the C1q-tag using fluorescence-activated synaptosome sorting and subjected to proteomic comparisons. The results raised the decline of mitochondrial functions in the C1q-tagged synapses of APP/PS1 mice based on enrichment analyses, which was verified using flow cytometry. Additionally, proteomics results revealed extensive alterations in the level of septin protein family members, which are known to dynamically form highly organized pre- and postsynaptic supramolecular structures, thereby affecting synaptic transmission. High-resolution microscopy investigations demonstrated that synapses with considerable amounts of septin-3 and septin-5 show increased accumulation of C1q in APP/PS1 mice compared to the wild-type ones. Moreover, a strong positive correlation was apparent between synaptic septin-3 levels and C1q deposition as revealed via flow cytometry and confocal microscopy examinations. In sum, our results imply that deterioration of synaptic mitochondrial functions and alterations in the organization of synaptic septins are associated with complement-dependent synapse loss in Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Amiloide/metabolismo , Proteoma/genética , Sinapses/genética , Doença de Alzheimer/patologia , Amiloide/toxicidade , Proteínas Amiloidogênicas/genética , Animais , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Humanos , Camundongos , Microglia/metabolismo , Microglia/patologia , Mitocôndrias/genética , Mitocôndrias/patologia , Oligopeptídeos/genética , Placa Amiloide/genética , Placa Amiloide/patologia , Septinas/genética , Sinapses/metabolismo , Sinapses/patologia , Sinaptossomos/metabolismo , Sinaptossomos/patologia
20.
PLoS One ; 15(1): e0227751, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31971960

RESUMO

One of the most promising applications of human pluripotent stem cells is their utilization for human-based pharmacological models. Despite the fact that membrane transporters expressed in the liver play pivotal role in various hepatic functions, thus far only little attention was devoted to the membrane transporter composition of the stem cell-derived liver models. In the present work, we have differentiated HUES9, a human embryonic stem cell line, toward the hepatic lineage, and monitored the expression levels of numerous differentiation marker and liver transporter genes with special focus on ABC transporters. In addition, the effect of bile acid treatment and polarizing culturing conditions on hepatic maturation has been assessed. We found that most transporter genes crucial for hepatic functions are markedly induced during hepatic differentiation; however, as regards the transporter composition the end-stage cells still exhibited dual, hepatocyte and cholangiocyte character. Although the bile acid treatment and sandwich culturing only slightly influenced the gene expressions, the stimulated cell polarization resulted in formation of bile canaliculi and proper localization of transporters. Our results point to the importance of membrane transporters in human stem cell-derived hepatic models and demonstrate the relevance of cell polarization in generation of applicable cellular models with correctly localized transporters. On the basis of our observations we suggest that conventional criteria for the evaluation of the quality of stem cell-derived hepatocyte-like cells ought to be augmented with additional elements, such as polarized and functional expression of hepatic transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Avaliação Pré-Clínica de Medicamentos/métodos , Hepatócitos/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Ácidos e Sais Biliares/farmacologia , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...